欢迎来到【匡凡丝网】体育场围网实力供应商官网!

【匡凡丝网】体育场围网实力供应商

全国服务热线:

18511120333

15503238679

新闻中心

您的当前位置:网站首页 >> 新闻中心

黎曼猜想证明现场

文章出处:gaomingjing 人气:发表时间:2018-09-26



错过了昨日 Michael Francis Atiyah 爵士的直播?篮球场围网没关系,这里有高清视频与完整 PPT。经过一天的发酵,关于阿蒂亚爵士此次黎曼猜想的证明,各方评价开始出现。

昨日,一场盛况空前的宣讲引爆了数学圈,89岁的阿蒂亚爵士对黎曼猜想的证明吸引了全球的关注。也因为关注人数过多,现场直播「车祸」不球场围网断:官方直播流崩溃,组织方不得不改用手机直播。

前期的手机直播质量奇差,声音和PPT内容都不清晰,导致一些读者(包括我们)漏掉了许多内容。

数小时前,Heidelberg Laureate Forum 2018 官方终于在 YouTube 上放出阿蒂亚爵士的高清演讲视频,短短数个小时已经有近 5 万次观看。


Atiyah的证明从理解物理学中的精细结构常数α出篮球场围网发,并发现依靠新的函数T(s)(也就是Todd函数),我们可以解决或至少为解决各种广泛的问题提供新方向,包括黎曼猜想。在整个演讲中,Atiyah首先介绍了复数的不可交换延伸:四元数(Quarternions)、复数、扩展欧拉公式到四元数(Euler-Hamilton公式)这些基础概念,它们是进一步提出新工具和证明方法的前提。

随后Atiyah重点介绍了证明黎曼猜想的核心新工具,即Todd多项式函数,借助这一函数与指数的无限迭代,我们可以理解精细结构常数α并尝试最终的黎曼猜想证明。其中精细结构常数α是物理学中的无量纲常篮球场围网数,它展示了原子物理学中原子谱线分裂的样式。

对于证明黎曼猜想的核心 Todd function T(s) 函数,Atiyah 在文档中给出了一些有趣的属性:

T是实数,即T(sˉ)=T(s)ˉ;

T(1)=1;

T会将临界带映射到临界带,临界线映篮球场围网射到临界线。

Atiyah将Todd函数称为弱解析函数,这意味着它是解析函数族的弱限制。所以对于任何复数中的紧致集篮球场围网K,T都是解析的。如果K是凸集,那么T是自由度为K(k)的多项式函数。Todd函数同样是复合的,即弱解析函数的解析函数还是解析函数。